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A potential-flow modelling of flow past an oscillating circular cylinder with separated 
wake is developed here based on Parkinson & Jandali’s (1970) wake-source model for 
steady flow. The phase-averaged pressure distributions, the in-line force coefficients, 
as well as the drag and added-mass coefficients, for an in-line oscillating circular 
cylinder in a steady free-stream flow are computed using the present ‘unsteady 
wake-source model’. The results show that Morison’s equation is in some cases a 
satisfactory model in the study of unsteady bluff-body aerodynamics. 

The two-dimensional incompressible potential-flow model simulates the effect of 
flow separation in unsteady flow by placing surface sources, with time-dependent 
strength and angular positions on the rear wetted surface of the body, and 
downstream sinks to form a closed wake model in the transformed plane. The 
unsteady Bernoulli equation is used to obtain the time-dependent pressure 
distributions over the front wetted surface, from which the in-line force coefficients 
are obtained through integration. 

The in-line force equation obtained from the present model is shown to be 
comprised of an uncoupled drag term and inertia terms. The corresponding 
hydrodynamic coefficients obtained for the case of oscillatory flow are also more 
realistic than those obtained in a potential-flow calculation without flow separation 
which gives a drag coefficient of zero and a constant inertia coefficient of 2.0.  The 
in-line force equation is reduced to the familiar Morison’s equation with some 
simplifications and thus provides some support to the much criticized Morison’s 
equation in the study of unsteady separated flow. 

Another interesting feature of the present model is that it enables the calculation 
of instantaneous drag and inertia coefficients which have not been successfully 
obtained previously. In the cases considered here, the variations of drag and inertia 
coefficients over a cycle are shown to be small and thus the Morison’s equation using 
mean coefficients is shown to predict the in-line forces rather precisely. 

The present model was compared with experimental measurements obtained by 
oscillating a 0.1 m diameter circular cylinder along the direction of free-stream flow. 
The pressure distributions and in-line force coefficients agree well with the 
experimental measurements for velocity ratio rw/U,  up to 0.25, reduced velocity 
U ,  T / d  down to 50 and Keulegan-Carpenter number 2xrld up to 17, where r ,  w ,  T, 
U ,  and d are the amplitude of oscillation, angular frequency, period of oscillation, 
free-stream velocity and diameter of the cylinder respectively. The computed drag 
and inertia coefficients also agree well with those obtained experimentally by 
previous investigators. 
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1. Introduction 
The understanding of unsteady flow past a stationary bluff body, or an oscillating 

body in a mean flow, has important applications in the design and study of offshore 
and coastal structures, ocean pipelines and risers. When an engineering structure is 
being towed or sited in an ocean environment, the flow field around the structure 
generally consists of a superimposed oscillatory wave and a mean flow. At  high 
Reynolds numbers, the resulting flow consists of a separated wake with vorticity 
being shed continually from the separation locations. In this flow regime, the vortex- 
flow force which corresponds to the form drag becomes comparable with, or even 
larger than, the inertia force and the viscous force is insignificant. An irrotational 
flow wave-load calculation which ignores the effect of flow separation is incorrect 
since the physics of the flow is not appropriately represented. 

To date, there is no complete theory or modelling available to predict the flow 
behaviour for such a flow because of the complexity of bluff-body aerodynamics at 
very high Reynolds numbers. Free-streamline models have been applied to steady 
potential flow in which the velocity, pressure distribution around the cylinder and 
separation locations are considered as two-dimensional time-averaged quantities. In 
these solutions, which separate the irrotational external flow from the rotational 
wake region, the wake region is not amenable to potential flow calculation, but its 
effect in the form of wake pressure must be obtained from experiment as an empirical 
input to the potential flow calculation. For a smooth-surface body-like circular 
cylinder where the size of the wake region is not well defined, additional empirical 
input on separation locations must also be specified. The shapes of the separation free 
streamlines are initially unknown, but the velocity distributions along them can be 
specified. These, together with the usual inviscid boundary condition on the body 
surface upstream of separation locations, enable the solution of the irrotational flow 
region using conformal transformation techniques to be found. Examples of these 
theoretical methods are the free streamline theories developed by Roshko (1954), 
Woods (1955) and Wu (1962), which show good agreement between the measured 
and predicted time-averaged surface pressure on simple two-dimensional bluff 
bodies. These methods were further refined by Parkinson & Jandali (1970) who 
specified the free-streamline positions using two wake-sources and their cor- 
responding images in the complex transformed plane. The strength and positions of 
wake-sources are found by satisfying the specified separation locations and pressure 
in the complex plane. The solution of the flow field in the complex plane is then 
transformed to that past a slit corresponding to the wetted surface of the body in the 
physical plane. The transformation is chosen such that the free-streamlines and 
stagnation points in the complex plane correspond to the separation shear layers and 
separation locations in the physical plane, with the added condition that the physical 
flow leaves the body surface tangentially at the separation locations. The physical 
flow field between the separation streamlines in the wake region is ignored. The 
prediction accuracy of their method is comparable to the other free-streamline 
theories, but it has the advantage of being simpler to apply. 

Bearman & Fackrell (1975) incorporated some of the ideas underlying the wake- 
source method of Parkinson & Jandali, but without using conformal transformation 
so their method can be used for calculating potential flow about bluff bodies of 
arbitrary shape. They use a distribution of discrete vortices to represent the wetted 
surface of the body and the solution is obtained by numerical methods. Their results 
on the pressure distributions agree well with that obtained from the analytic 
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expressions by Parkinson & Jandali. Kiya & Arie (1977) also incorporated some of 
the ideas underlying Parkinson & Jandali’s wake-source model by taking into 
account the displacement effect of the far-wake by means of a sourcesink system 
located behind the body. In this way, the far-wake displacement effect, causing wind- 
tunnel blockage, is properly deduced. Celik, Pate1 & Landweber (1985) proposed a 
boundary-layer calculation method which computes the separation locations and 
displacement thickness. These are then taken into account in the irrotational-flow 
model to compute the pressure distribution needed in the boundary-layer calculation. 
The iterative calculation procedure which represents the viscous-inviscid interaction 
continues until convergence occurs. Their method can predict the locations of 
separation, drag coefficient, and pressure-distribution parameters at Reynolds 
number as high as lo8. 

In spite of the interest in unsteady flow past a bluff body and many experimental 
measurements of the unsteady-flow-induced forces, there are few numerical works in 
this area because of its complexity. Analytical solution of separated time-dependent 
flow is not yet possible even for relatively idealized situations. Hurlbut, Spaulding & 
White (1982) presented a finite difference model for viscous two-dimensional flow of 
a uniform stream past an oscillating cylinder. A non-inertial coordinate trans- 
formation is used so that the grid mesh remains fixed relative to the accelerating 
cylinder. Three types of cylinder motions are considered: oscillation in a still fluid, 
oscillation parallel to a moving stream and oscillation transverse to a moving stream. 
The results were computed for cases when the cylinder oscillation is near the natural 
vortex-shedding frequency. However, the method is limited to Reynolds number 
lower than 100. Lecointe & Piquet (1989) presented a numerical solution of the 
unsteady two-dimensional Navier-Stokes equations using an AD1 Peaceman- 
Rachford time discretization and a fourth-order accurate OCI spatial scheme for 
flow of Reynolds number up to 855. They investigated the vortex-shedding 
characteristics behind a circular cylinder immersed in a uniform stream and 
performing superimposed in-line and transversed oscillations. Harmonic, sub- 
harmonic and superharmonic excitations were considered and their results compared 
favourably with experimental measurements. Finite-difference simulations of 
unsteady flow about stationary and oscillating cylinders have also been carried out 
by Tamura, Tsuboi & Kuwahara (1988). There have also been some numerical 
studies on zero-mean oscillating flow around circular cylinders. Justesen (1991) and 
Baba & Miyata (1987) carried out studies based on finite-difference analysis of the 
Navier-Stokes equation. Vortex methods have also been used by Smith & Stansby 
(1991), Skomedal, Vada & Sortland (1989) and Mostafa (1987) to study such flow. 

The present study is undertaken with the following two objectives in mind. The 
first objective is to derive, from potential-flow consideration, a theoretical or semi- 
theoretical model for the prediction of pressure distributions and hence the in-line 
forces for an along-flow oscillating cylinder in a mean flow. The second objective is 
to examine the possibility of deducing the widely used Morison’s equation from the 
present model. The real unsteady separated flow is approximated by the following 
assumptions based on some empirical observations. 

(i) The experiment flow field which provides the empirical inputs, though 
unsteady, is uniform and the time phase-averaged quantities, such as velocity and 
pressure distribution, are reasonably two-dimensional except near the ends of the 
body -span. 

(ii) The boundary layer and the separation shear layer are assumed thin and well- 
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defined close to the body, and the flow field is irrotational everywhere external to the 
boundary layer and shear layer. 

(iii) The free-steam flow velocity is assumed to be sufficiently high to convect the 
shed vortices downstream such that there is negligible direct interaction between the 
vortices and the cylinder during the in-line oscillation, and the oscillation frequency 
does not interact with the vortex-shedding frequencies. 

(iv) The separation locations are assumed to be constant during each cycle of 
oscillation as a corollary of assumption (iii). 

(v) It is experimentally observed (as shown in figures 44) that the phase- 
averaged back pressure over the body surface exposed to the wake is approximately 
uniform and its value is close to that at  the separation locations. Therefore, in the 
modelling, the phase-averaged separation pressure is assumed to be equal to the 
phase-averaged back pressure averaged over the body surface exposed to the wake. 

These assumptions point out the possibility of extending Parkinson & Jandali’s 
model to unsteady flow by incorporating the time-dependent wake-sources of 
varying strength and angular positions to account for the time-dependent separation 
velocity. The empirical inputs are the separation locations, which are assumed fixed, 
as stated in assumption (iv), and the time-dependent phase-averaged wake pressure. 
The unsteady Bernoulli equation is used to determine the unsteady pressure 
distribution. A preliminary attempt based on an open wake, as in the Parkinson & 
Jandali’s (1970) original steady flow wake-source model, was abandoned owing to the 
problem of infinite unsteady potential in the far field, which is induced by the 
unbound pulsating sources. In the present model, the wake is closed, and the 
conformal ma.pping and Bernoulli equation are applied directly to a non-inertial 
frame of reference which is attached to the centre of the oscillating cylinder (Milne- 
Thomson 1968, pp. 87-103). 

2. The unsteady wake-source model 
The physical and transformed planes of the unsteady wake-source model for a two- 

dimensional, incompressible and irrotational unsteady flow past a bluff body are 
shown in figure 1. The physical flow consists of a circular cylinder with oscillating 
velocity - U(t)  being placed in a uniform free-stream flow U ,  in the direction of the 
real axis. The flow is symmetrical about the horizontal plane with two separation 
locations at S ,  and S ,  respectively. In the physical Z-plane, part of the physical 
surface S ,  AS, is mapped conformally from the corresponding part of the circle y in 
the [-plane by the analytic function 

z =.f(C). (1) 

It should be noted that, since the circle y is also oscillating, the transformation is 
applied with respect to the body-centred (non-inertial) frame of reference. 

The transformation preserves the direction, but not necessarily the magnitude, of 
the incident flow as seen in the moving frame. With the wake region in the physical 
Z-plane being ignored, the physical slit S, AS, BS, in the Z-plane is mapped from the 
complete circle y of radius R in the [-plane. 

In the complex [-plane as shown in figure 1 ( b ) ,  the flow field past the oscillating 
circle y ,  with oscillating velocity - V ( t ) ,  is comprised of a uniform steady free-stream 
flow V, past a suitable doublet. Sources, of strength 2&(t) each, are symmetrically 
located at  the time-dependent source angles kcY(t) on the arc S,BS, of circle y.  A 
double-sink of strength - 2Q(t) is placed along the real axis at location (mR, 0 ) ,  where 
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't (4 

FIGURE 1. (a) Physical z-plane and ( b )  Parkinson & Jandali's transformed 5-plane. 

m is to be determined. The corresponding image sinks and sources are placed in the 
circle y in accordance with Milne-Thomson (1968, §$8.60-8.61). 

The complex potential of the resulting flow with respect to the inertial frame of 
reference (as viewed by a stationary observer outside the circle) is 

It should be noted that the cylindrical coordinate g (defined as re") is body-centred. 
Therefore, the sources and sinks in the wake are attached to the c-plane of the 
oscillating circle y.  

The corresponding complex velocity in the 9-plane is 

The complex potential has the same value at corresponding points of the Z-plane and 
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[-plane, whereas the complex velocity in the physical Z-plane is related to that in the 
[-plane by 

Taking [ = Reie a t  the surface of the circle y ,  (2) and (3) can be simplified to 

and 
&( t )  ie-" sin 0 (cos S - c )  

W ( 0 , t )  = V,(1-e-i2e)+V(t) (-e-i2s)+- (6) XR (COSe-cosq (cose-c) 7 

where c = +[m + (1  / m ) ] .  
The unsteady Bernoulli equation is required to obtain the pressure distribution on 

the surface of the oscillating cylinder shown in figure 1 (a). The unsteady Bernoulli 
equation, written in a body-centred cylindrical coordinate system, is applied to the 
flow with respect to the oscillating cylinder (a moving frame of reference). Robertson 
(1965, $5.2) and Milne-Thomson (1968, $3.61) showed this to be written, in our 

where P(0, t )  denotes the unsteady surface pressure distribution and P, the steady 
free-stream pressure. Ur,(t) and U,,,(e, t )  denote the magnitude of the incoming 
stream velocity and surface relative velocity respectively, as viewed by an observer 
moving with the oscillating cylinder. 

Note that a$/at Is represents the unsteady velocity potential evaluated a t  the 
circular cylinder surface with respect to the inertial frame of reference. 

C,(B, t )  is expressed in terms of angle 0 on the [-plane instead of the physical angle 
p for convenience. By inspection of (7), it can be seen that the surface relative 
velocity and the unsteady potential terms are required to solve for C,(e , t ) .  

2.1. Surface relative velocity term U,,,(07 t )  
In general, a fluid particle moving with absolute velocity &,s as seen in a frame of 
reference moving with velocity - V( t )  has a relative velocity given by 

Kel = Ebs+ v(t). (8) 

Therefore, upon substituting the absolute complex velocity of (6) into (8), the 
complex surface velocity relative to the oscillating cylinder in the [-plane can be 
shown to be 

1 1 (cos 6 - c )  
2 7 ~ ~  (cos e - cos S) (cos e- c )  

W,,,(e,t) = 2ie-'*sine (9) 

where K,(t) = V ,  + V ( t ) .  The surface relative velocity U,,,(8, t )  in the physical Z-plane 
is then obtained from the corresponding W,,,(e,t) in the [-plane through (4). 

The contour of circle y in the [-plane is mapped to the slit S,AS,BS, in the 
physical Z-plane, as written in the body-centred cylindrical-coordinate system, by 
the analytic function r 4 1  

(5- cot 01) 
2 =f([) = K[([-cota)- 
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where K is a scaling factor for different sizes of circular cylinder and a the stagnation 
angle in the [-plane, which corresponds to the separation angle p, in the Z-plane. 

In the above transformation, the relationship between angle /3, in the Z-plane and 
angle a in the [-plane is given by 

For convenience, the radius R of the circle y in the [-plane is taken to be 

a = 4(7c--p,). (11) 

(12) 

(13) 

R = coseca. 

The scaling factor K is related to the separation angle and the diameter of the 
cylinder by 

where d is the physical diameter of the cylinder in the Z-plane. In the conformal 
mapping, the separation locations S ,  and S ,  are made critical points at which 
f’(C) = 0. Owing to doubling of angles at  the critical points, the normal stagnation 
streamlines in the [-plane will correspond to tangential separation streamlines in the 
Z-plane. According to (4), Ure,(8, t )  a t  these two locations would be infinite, causing 
the pressure there to be infinite, which is physically inadmissible. Therefore, the first 
boundary condition will correspond to setting Wre,(8, t )  = 0 at S,  and S,  and a 
relationship between &(t )  and 6 is thus obtained : 

K = @sinps = @sinacosa, 

(cos a - c) 
(cos 6 - c) * 

&( t )  = 27c V,, ( t )  cosec a (cos 6 - cos a) 

It should be noted that 6 is time-dependent. By substituting & ( t )  into Wrel(8, t ) ,  and 
introducing so = (cos a - c)/ (cos 8 - c), we have 

cosS-cosa Wrel(8, t )  = 2G,(t) ie-iesin8 
cos 8 - Gos s 

The derivative of the mapping function of (10) on the circle y is 

sin2 a 
(eio- cos a)z  

By substituting (15) and (16) into (4), we arrive at 

wheres = [so~osa-cos8+(1-so)cosS]/(cosa-cos8). Sincef’(6) = Katinfinity, the 
magnitude of the incoming stream velocities with respect to the oscillating frame of 
reference, K, ( t )  in the [-plane and Ur,(t) the Z-plane, are related by 

and (17) can be further reduced to 

U,,,(O, t )  - sin 8 (1 -2 cos0 cos a + cos2a) s - 
‘rco(t)  (cos s - cos 8) 

Equation (19) is the surface relative velocity of an oscillating cylinder in steady mean 
flow. 
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2.2. Unsteady potential term, a$/at I s  
From the definition of the complex potential 

we have 

The unsteady potential term on the circle y can be obtained by differentiating ( 5 )  
with respect to time and retaining only the real parts to give 

The derivative of the source strength can be obtained from (14), noting 
<,(t) = V(t ) ,  as 

(cosa-c) 
(cos6-c) 

Q ( t )  = P(t) 27c cosec a (cos 6- cosa) 

. (cos a - c)2 
(cos6-c)2 * 

- K,(t) 27c cosec 01 sin 66 

By substituting (13), (14), (18) and (22) into (21), the unsteady potential on the circle 
y becomes 

+ U,, (t) d cos a sin 6 I ] .  (23) 

2.3. Pressure distribution for a circular cylinder oscillating in mean $ow 
The unsteady Bernoulli equation as given by (7)  is used together with (19) and (23) 
to obtain the pressure distribution on the front wetted surface of an oscillating 
circular cylinder as follows : 

1 sin2 8( 1 - 2 cos 01 cos 8 + C O S ~  ~ L ) ~ E ~  

(cos 6- cos el2 
c,(e, t )  = - 

1 sec a - cos 6 
+( sec a + cos a )  - cos 0 

sin p = cos a sin 8 

For the case where the cylinder is performing simple harmonic motion with 
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amplitude r and angular velocity w in steady mean flow, the velocity and acceleration 
are given by U,,(t) = U ,  + rw sin wt, (26) 

O(t) = rdcoswt. (27) 
Hence, the pressure coefficient is given by 

1 sin2 8 (1 - 2 cos a cos 8 + cos2 a ) 2 ~ 2  

(cos s- cos 

I1 rw2d vrn [ (cos a- c) ln 1 cos 8--c 
(COS a - c )  cos 8 - cos 6 -- cos wt cos a cos 8 + 2 cos a (cos S- cos a) 

(cos a - c) 
urn Td(tlT) (cos 6 - c )  

2 cos a sin 6 
-( 1 +zsinwt)-- d da 

(cos a - c )  (cos 6- cos a) cos 8 - cos 6 
( c o ~  8- cos s) - (cos s- C) In I cos 8- c 

It can be seen that the above expression is a first-order nonlinear differential 
equation. It involves the source angle a(t) and the stagnation angle a besides the 
basic parameters r ,  w and U,. The angles 0, a, S are not transformed back to the 
physical Z-plane to preserve the simplicity of the above expression. 

For steady flow past a circular cylinder, 

u ( t )  

urn = 1.0, U(t) = 0. 

Furthermore, the strength and angular positions of the sources do not change, and 
thus the derivative of the source angle is zero. With these conditions, (28) reduces to 

429) 
sin2 8 (1 -2 cosa cos 8+ cos2 

(COSS-COS8)Z 

3. Method of solution 
There are altogether three unknowns in the unsteady wake-source model: the 

constant parameter m which is related to the location of the sinks behind the body, 
the source strength &(t) and the angular position 6 which is time-dependent. 

The sinks were placed downstream behind the body for flow continuity in order to 
satisfy the zero unsteady potential requirement at  infinity for irrotational flow 
modelling, as explained in Sarpkaya & Issacson (1981, p. 28). This is because in the 
far field the irrotational-flow pressure disturbance caused by the body’s presence 
must be zero. 

The location parameter m of the downstream sinks is determined from the 
criterion of continuous separation pressure in steady-flow solution of the closed-wake 
model. Detailed experimental studies and documentations of steady flow past 
circular cylinders and flat plates were carried out by Cantwell & Coles (1983) and 
Fage & Johansen (1927) respectively. It was observed that the phase-averaged 
pressure along the separation streamlines increase monotonically from the separation 
pressure value, at the separation locations, towards the free-stream pressure value 
downstream of the bluff bodies. This criterion is thus used to determine the location 
of the downstream sinks. With an initial estimated location of sinks near the body, 
the pressure distribution around the circular cylinder and along the separation 

21 FLY 24U 
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streamlines are computed. The pressure distribution functions along the separation 
streamline were found to contain a discontinuity (a sharp drop in pressure) 
immediately downstream of the separation location, which is physically inadmissible, 
if the sinks were placed too close to the body. The location of the sinks is then varied 
and the computation of pressure distribution is repeated until a smooth and 
gradually increasing pressure distribution function along the separation streamlines 
is obtained. This location corresponds to a critical value of m beyond which the 
pressure distribution function does not contain any discontinuity. It has been 
verified that varying the value of m beyond this has negligible effect on the pressure 
distribution on the front wetted surface of the circular cylinder. 

For a given set of empirical C,, and p,, it is interesting to note that the critical 
value of m remains unchanged with different free-stream flow velocity and circular 
cylinder radius. This is because the strength of the sinks downstream is directly 
proportional to the relative velocity of the incoming flow and the radius of the 
cylinder as given by (14). Since a closed-wake model is necessary, as explained earlier, 
the sinks are fixed a t  this critical location when the model is extended to unsteady 
flow. 

In the close-wake modelling, there exists a stagnation point somewhere 
downstream of the sinks whereas there is a far-wake displacement thickness in the 
real flow. The location of the stagnation point is dependent on the strength and the 
location rnR of the sinks discussed above. We shall allow the existence of the said 
stagnation point since it does not affect the solution in the near vicinity of the 
circular cylinder, which is of interest in the present paper. 

Two more boundary conditions are required for a unique solution. The first one 
corresponds to setting W,,,(e, t) = 0 at S ,  and S,, as in $2.1, to obtain (14) which 
allows the unknowns &(t )  and &(t)  in the unsteady potential term to be replaced such 
that the C,(8, t )  can be expressed in 6 and 8 only. The second boundary condition is 
to satisfy the separation pressure condition. As stated in assumption (v), the time- 
dependent phase-averaged separation pressure is assumed to be the time-dependent 
uniform phase-averaged back pressure over the body surface. By setting 0 = a in 
(24), the back pressure equation is obtained as 

1 sin6 a 
(cos 6- cos a), 

I1 [ COS2 a + 2 COS a (COS 6- COS a) 
P m  (cosa-c)lnI cosa-c 

(cos a - c)  cos a - cos 6 

(cos a - c) 
2 cos a sin 6 +--- U,&) d dl3 

urn u,Td(tlT) (cos 6- c )  

(30) 
(cos a- c) (cos a - cos 6) 

X[l+(cos6-c)lnJ (COSS-c) 

The above first-order nonlinear differential equation in 6 can be solved numerically 
by using the fourth-order Rung-Kutta algorithm with arbitrarily specified initial 
condition at t = 0. The cylinder is assumed to start from rest and gradually 
approaches rw sin wt in an exponential manner. The initial source angle is assumed to 
be 15", as obtained from the steady-flow solution. However, this initial value is not 
important, as the source angle 6 will converge to the correct value when steady 
oscillation is reached. The time interval is chosen to be T/2000. A Fortran program 
was developed and run on the IBM3081 mainframe to solve the differential equation. 
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4. Derivation of drag and added-mass coefficients 
In the following part of this paper, through the unsteady wake-source model, the 

derivation of the instantaneous drag coefficient C,(t) ,  and instantaneous added-mass 
coefficient CA(t) (hence the instantaneous inertia coefficient C,(t))  are shown. For 
symmetrical flow, the in-line force coefficient C,(t) can be obtained by integrating the 
pressure distribution over the circular cylinder as 

where pis the physical angle measured from the front stagnation point. Since the back 
pressure is assumed uniform, i.e. independent of p, (31) can be further simplified to 

CF(t) = Cp(/3, t )  cospd/3-Cpb(t)sin/3s. r 
Since the pressure distribution as given in (28) is expressed in terms of the parametric 
variable 6, by using (25) and (28) we obtain 

sin2 6 (cos a cos 6- 1)  cos 6-  cos a cos 26 
where + 

g(') = [i(sec a + cos u) - cos 812 g(sec a + cos a) - cos 0' 

Some physical interpretations of C,,(t) are considered before solving for CF(t). First, 
(28) is re-written as follows: 

IT: rw2d 
C,(6, t )  = fi(6, t )  + f2(6, t)--ccoswt+f,(B,t) 

2 Vrn 
sin2 6 (1 - 2 cos a cos 6 + cos2 

where f l ( O , t )  = 
( cos 6 - cos 6)' 

(COS a- C) cos 6- cos 6 
(cos6-c) In I cos6-c 

cos a cos 6+ 2 cos u (COS S- cos 01) 
IT: 

and 

2 cos 01 sin 6 
d d6 

f3(6, t )  = urn T W T )  

(COS 01 - C) cos 6 - cos 6 - 
(cosd-c) In I cos6-c 

It can be seen from (34) that the pressure acting at a point on the front wetted 
surface is made up of two components: 

(i) The term corresponding to f1(6,t) which is derived from consideration of 
tangential velocity relative to the surface of the oscillating cylinder. 

(ii) The inertia terms : f2(6, t )  and f3(6, t ) ,  both obtained from the time derivative 
of the surface velocity potential, aq5/at Is, which corresponds to the local temporal 
acceleration of the surface flow. These are assumed to be zero because the inertia 
effect in the wake is neglected. 

With this assumption, the empirically obtained back pressure coefficient C,,(t) can 

21-2 
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be used together with (34) to solve for (33). The in-line force coefficient equation can 
then be expressed as 

CF(t) = [ pf. (8, t )  g( 8) d8 - h,(t ) sin PSI (1 + 
II. 

where 

However, when the familiar Morison’s equation is applied to the present flow, the 
in-line force coefficient C,(t) for an oscillating cylinder in a steady mean flow can be 
written as 

CF(t) = - d 

where F ( t )  is the in-line force. The average hydrodynamic drag and added-mass 
coefficients, C, and C,, are conventionally determined empirically using least- 
squares or Fourier analysis methods which yield similar results (Sarpkaya & Issacson 
1981). These coefficients are usually expressed in terms of Keulegan-Carpenter 
number KC (defined as 2xr/d), the reduced velocity U,. (defined as U ,  T/d, where T 
is the period of oscillation), the Reynolds number based on the maximum velocity 
Re,,, and the frequency parameter Pf (defined as d2/vT, where v is the kinematic 
viscosity of the fluid). 

It should be noted that the relationship between the added-mass coefficient C,(t) ,  
and the inertia coefficient C,(t) for the case of superimposed oscillatory and mean low 
past a stationary cylinder, is given by 

c M ( t )  = 1 + c A ( t ) .  (37) 

Equation (37) is equally applicable when the average values of C, and C ,  are used 
instead of the instantaneous values. 

Interestingly, when (35) is compared with the Morison’s equation as in (36), it can 
be seen that they are compatible with the variables in the square-brackets expressed 
in terms of coefficients as 

Thus, the instantaneous drag and added-mass coefficients, derived from the unsteady 
wake-source model, are defined as 
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It is noted that an additional term is present in C,(t), (38), when the unsteady wake- 
source model is used. The corresponding coefficient of this term is derived from 
aq5/at Is which is related to the inertia of the flow. This coefficient, as well as the 
corresponding term, is found to be very small. Therefore, i t  is tentatively called the 
residual-inertial coefficient and defined as 

Q,(t) = fA8, t )  do) do- (42) l 
The above-defined coefficients are dependent on the source angle 6(t) and can be 
readily obtained by numerical integration after 8(t) is solved in $3. 

5. The experiment 
In order to provide empirical inputs to the present unsteady wake-source model 

and experimental data for comparison, an experiment was conducted to measure the 
phase-averaged pressure distributions around a circular cylinder oscillating along the 
direction of free-stream flow in a wind tunnel. Most of the published experiments on 
unsteady flow around a cylinder involved the measurements of force rather than 
pressure. However, Matten (1979) measured, with 24 pressure transducers, the 
instantaneous pressure distribution around a circular cylinder oscillating in simple 
harmonic motion while being towed along the direction of oscillation in a tow tank. 
In the present experiment, the phase-averaged pressure distribution over several 
oscillations are measured around the cylinder, instead of the instantaneous value. 

The experiment was conducted in an open-circuit wind tunnel of cross-section 1 m 
high, 2 m wide and free-stream turbulence intensity below 0.15%. A circular cylinder 
of 0.1 m diameter and 0.95 m length, with end plates of 0.3 m diameter, was oscillated 
along the direction of free-stream flow by a Scotch-yoke mechanism on top of the 
wind tunnel. The frequency of oscillation and free-stream velocity were varied up to 
110 r.p.m. and 8.5 m/s respectively. 

The pressure at the mid-span of the cylinder was measured by a Setra model 237 
strain-gauge pressure transducer of 689 N/m2 (0.1 p.s.i.) range via a 1 mm diameter 
pressure tapping. The transducer was mounted inside the cylinder and connected to 
the pressure tapping via a 50 mm length of plastic tubing. In order to reduce the 
response time of the pressure transducer, the plastic tubing WLES kept short and the 
air trapped between the adapter housing and the pressure transducer diaphragm was 
kept to a minimum. Based on the method of Archibald & Robins (1952), the time lag 
in the pressure measuring system was found to be about 2.2 ma which is insignificant 
when compared to the rate of data acquisition and the cylinder’s speed of oscillation. 
The pressure signal was amplified, converted to a digital signal and acquired by an 
Apple I1 microcomputer. 

To synchronize the pressure transducer signal with the oscillation of the cylinder, 
two pulse trains were generated using a perforated disc, a photo-transistor and a 
light source. The sampling pulse train was generated by 100 equally-spaced 
peripheral holds on the perforated plate attached to the shaft carrying the Scotch- 
yoke mechanism. A light source and a photo-transistor were aligned with the hole on 
each side of the disc and the intermittent interruption of the light generated a 
sampling pulse train at 100 times the frequency of oscillation. The sampling pulse 
train was converted to a TTL signal using Schmidt’s trigger and fed to the 
microcomputer to trigger the sampling of pressure signal a t  100 equal time intervals 
t in a time period T of oscillation. 
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In order to begin sampling at a reference oscillation position, a second triggering 
pulse train was generated by having a reference hole on the same perforated disc 
aligned radially with one of the 100 sampling holes. This reference hole, together with 
a light source and a photo-transistor, generated a triggering pulse train at  the same 
frequency as the cylinder's oscillation. The triggering pulse was converted to a TTL 
signal by a Schmidt's trigger and fed to a R-S flip-flop circuit so that after manual 
initialization, the sampling could begin when the first trigger pulse was detected. In 
the present investigation, the sampling of the pressure signal began when the 
cylinder was at the extreme downstream position of an oscillation. The pressure 
signal was phase-averaged over 20 oscillations. It was found that 20 oscillations were 
sufficient for the phase-averaged pressure to attain a stationary mean. 

The pressure distribution around the cylinder was obtained by positioning the 
pressure tapping at 10" intervals from 0" to 180'. The 19 sets of phase-averaged 
pressure data, although taken at  different times but referenced to the same phase of 
oscillation, could be used to construct the mean pressure distribution around the 
cylinder a t  T time interval. The normalized mean pressure distribution curves in 
the form of the pressure coefficient C,(t) at different oscillation phases t / T  were used 
to provide empirical inputs to the present unsteady wake-source model and 
experimental data for comparison. The detailed experimental set-up and some of the 
experimental results are presented in Low, Chew & Tan (1989). 

6. Results and discussion 
6.1. Veri$cation of closed-wake model 

The present closed-wake model is verified by comparison of the computed pressure 
distributions with the measurements of the present experiment and those obtained 
by previous investigators for the case of a stationary cylinder in steady flow. The 
computed pressure distributions as shown in figure 2 are based on a separation angle 
of 80" and averaged back pressure coefficient of - 1.05. These computed results agree 
well with the present experimental measurements taken at Reynolds numbers 27 000 
and 54000 respectively. The measurements exhibit the subcritical pressure 
distributions with the separation angle approximately at 80". The computed results 
also compare well with the experimental measurements of Cantwell & Coles (1983) at 
Reynolds number 140000 which has a separation angle a t  approximately 77" and 
averaged back pressure coefficient of - 1.06. 

The experiment of Cantwell & Coles (1983) was performed at  Reynolds number 
140000 which is higher than the Reynolds numbers of the present experiment. 
Nevertheless, they are in the subcritical flow regime and the present experimental 
measurements agree well with theirs. The steady flow drag coefficients, C,,, for the 
present two cases are 1.26 and 1.13 respectively. They are obtained by integrating the 
experimental pressure distributions around the circular cylinder without the wind- 
tunnel blockage or cylinder's aspect ratio correction. These values also compare 
favourably with the C,, of 1.237 obtained by Cantwell & Coles (1983). This 
comparison served as a check on the validity of the present experimental set-up 
before the experiments on an oscillating cylinder were conducted. 

As explained in $3, the pressure distributions along the separation streamlines 
were computed for the determination of parameter m which corresponds to the 
location of the sinks to close the wake. The present closed-wake model approaches 
Parkinson & Jandali's original open-wake model if the sinks were placed increasingly 
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FIGURE 2. Comparison of measured and computed steady flow pressure distributions. 0 ,  present 
experiment, p, = 80°, C,, = -1.05, (a )  Re = 27000, ( b )  Re = 54OOO; V, Cantwell & Coles (1983), 
Re = 140000, p, = 7 7 O ,  C,, = - 1.06; -, present closed-wake model for steady flow, m = 17. 
(Identical to Parkinson & Jandali's (1970) model.) 

v 
d 

0.5 

v 
d 

0.5 

0 
0 0.5 1 .o 1.5 2.0 

x l d  

0 I 
0 0.5 1 .o 1.5 2.0 

x l d  
FIGURE 3. Separation streamline shapes for circular cylinder by present model. 8. = 80°, 
C,, = - 1.05, m = 17 ; 8, = 120°, C,, = -0.38, m = 8.0. Shaded area, Cantwell & Coles (1983) shear- 
layer measurements. 

further downstream. However, the pressure distribution on the circular surface is 
found to be indistinguishable from those obtained by Parkinson & Jandali's model. 

The separation streamline shapes were also computed for comparison with 
experimental data as shown in figure 3. For the subcritical flow regime, a separation 
angle of 80" and back pressure coefficient of -1.05 has an m value of 17. It is 
interesting to note that the shape of the separation streamline calculated by the 
present closed-wake model shows good agreement with experimental data obtained 
by Cantwell & Coles (1983). The separation streamline shape for the supercritical 
regime is also computed using the data from Parkinson & Jandali (1970). For 
/3, = 120" and C,, = -0.38, the corresponding value of m is 8. In the near wake region 
as shown, these streamlines are indistinguishable from those obtained by Parkinson 
&, Jandali (1970). It should be noted that the streamlines represent the time-averaged 
separation shear-layers rather than the physical streamlines marking the wake 
region. Furthermore, the streamlines do not intersect the cylinder surface 
downstream of separation locations which satisfy the requirements discussed in 
Parkinson & Jandali (1970, $4.2) and Wood (1955, $4). 

6.2. Pressure distribution for a circular cylinder oscillating in mean flow 
In the present unsteady wake-source model, the separation angle is assumed to be 
unaffected by the oscillations of the cylinder. This is supported by the experimental 
pressure distributions at different phases of oscillation as presented in figures 4-6. 
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FIQURE 4. Pressure distributions at different phases on circular cylinder oscillating in steady mean 
flow. -, present model; 0 ,  present experimental data; Re = 54000, KC = 2.51, bf = 1010, 
U, = 53.7, VR = 0.05; U ,  = 8.5 m/s, r = 0.04 m, w = 95 r.p.m. (a) t /T = 0; (b)  0.2; (c) 0.4; (d )  0.6; 
(e) 0.8. 

For the range of parameters investigated, the separation angle appears to be 
constant at all phases. It is approximately equal to 80°, the value usually observed 
for steady subcritical Reynolds-number flow past a circular cylinder. Furthermore, 
all the subsequent unsteady wake-source model results compare favourably with the 
experimental data when computed with empirical separation angle of 80". 

The experimental measurements of unsteady flow past the cylinder were obtained 
by varying the amplitude of oscillation r ,  the frequency of oscillation w and the mean 
free-stream velocity U,. The amplitude of oscillation can be described by the 
Keuleganxarpenter number KC and the frequency of oscillation is characterized by 
the frequency parameter /3!. The mean free-stream velocity influence is reflected in 
the Reynolds number Re, defined as U,d/v. 

The combined effects of amplitude, frequency, and mean velocity can be 
represented by a velocity ratio parameter VR defined as rw/U,. It represents 
basically the ratio of maximum oscillation velocity rw to the free-stream velocity U ,  
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FIGURE 5. Pressure distributions at  different phases on circular cylinder oscillating in steady mean 
flow. -, present model; 0 ,  present experimental data;  Re = 54000, KC = 9.42, pf = 521, 
U, = 104, VR = 0.09; U ,  = 8.5 m/s, r = 0.15 m, w = 49 r.p.m. (a) t /T  = 0; ( b )  0.2; (c) 0.4; (d) 0.6; 
(e) 0.8. 

and indicates the degree of unsteadiness of flow past the cylinder. It is related to KC, 
pf and Re by 

A relatively small VR is required for the present model to ensure that the shed 
vortices do not interact directly with the body in order to satisfy the assumptions 
made. The present model is not expected to be valid for values of VR near to or larger 
than 1.0. 

Another useful parameter to describe the unsteady flow is the reduced velocity U,. 
If the time period of oscillation T coincides with the time period of vortex shedding, 
this number becomes the inverse of the Strouhal number. For flow past a circular 
cylinder in subcritical Reynolds-number flow, the Strouhal number is approximately 
0.2, corresponding to U, = 5.  Thus, if the reduced velocity is much greater than 5 ,  it 
indicates that the frequency of oscillation is much lower than the vortex-shedding 
frequency and strong coupling of the two effects is not expected. The present 
unsteady wake-source model is not valid when U, is close to 5 where there is strong 



644 Y .  T. Chew, H .  T.  Low, 8. C. Wong and K .  T.  Tan 

e-1 (lm (d )  v- 
1 -  

-- urn (4 --Y- 
1 -  

FIQURE 6. Pressure distributions at different phases on circular cylinder oscillating in steady mean 
flow, -. present model; 0 ,  present experimental data; Re = 27000, KC = 16.96, p, = 393, 
U, = 68.9, VR = 0.25; Urn = 4.25 m/s, r = 0.27 m, w = 37 r.p.m. (a) t /T  = 0;  ( b )  0.2; (c) 0.4; (d) 0.6; 
( e )  0.8. 

interaction between the oscillation and vortex-shedding frequencies. The reduced 
velocity is related to KC and VR by 

KC 
V R  ' 

u, = - 

Although there are many sets of measurements taken, only three representative sets 
which cover the range of experimental variables, r ,  w ,  Urn are presented in figures 4-6 
to verify the present unsteady wake-source model. Figure 4 represents the 
measurements at  low amplitude and high frequency of oscillation while figure 5 
represents the measurements at high amplitude and low frequency of oscillation. In 
both cases, the computed results from the unsteady wake-source model predict the 
measured data well at  different phases of oscillation except near the front portion of 
the cylinder in figure 4. 

Figure 6 represents measurements at  large unsteadiness with VR = 0.25. This is 
reflected in the large variation of the pressure distribution around the cylinder with 
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the phases of oscillation. The measured stagnation point C ,  varies from 1.5 at  
t / T  = 0.2 to about 0.5 at t /T  = 0.8 and the wake C, varies from - 1.25 at t /T = 0.2 
to about -0.65 at t / T  = 0.8. However, the computed results still manage to predict 
the pressure variation reasonably well except for the retreating half of the oscillation 
when the cylinder is moving away from the flow. 

In all three cases presented above, the reduced velocity is much greater than 5 and 
strong coupling of the vortex-shedding frequency and the cylinder-oscillation 
frequency is not expected. The experiment cannot be extended to lower reduced 
velocity because of the difficulty in oscillating a large diameter cylinder at high 
frequency without introducing the problems of vibration and large variation in 
motor torque required. It is also difficult to conduct the experiment at low free- 
stream velocity U ,  in order to reduce U, or increase VR since a very sensitive pressure 
transducer is then required. If experimental measurements are available a t  lower U, 
and higher VR, the present unsteady wake-source model can be further tested in a 
more demanding flow with large unsteadiness. 

6.3. Variations of in-line force, drag and inertia coeficients over a cycle 
The in-line force coefficient from the unsteady wake-source model is evaluated 
through (35) and the experimental in-line force coefficient is obtained from the 
experimental phase-averaged pressure distribution through integration over the 
circular cylinder surface. Comparison between the theoretical and experimental in- 
line force coefficients are made in figures 7 and 8. Figure 7 represents the case of low 
amplitude and high-frequency oscillation (as in figure 4) and figure 8 represents the 
high unsteady case of high amplitude and high frequency of oscillation (as in figure 
6). The present theory predicts the force variation over the cycle satisfactorily. 

There have been some attempts to evaluate the variations of instantaneous drag 
and inertia coefficients from Morison’s equation for the case of pure oscillatory flow 
past circular cylinder. However, these methods of evaluation were not without 
criticism and therefore not extended to the solving of c,(t) and cD(t )  for 
superimposed mean and oscillatory flow past circular cylinder. Keulegan & Carpenter 
(1958, $8) attempted to evaluate C,(t)  and C,(t) from Morison’s equation together 
with two other imposed assumptions. Their method is not acceptable (Sarpkaya & 
Issacson 1981) because there is no distinction between accelerating flow and 
decelerating flow as long as the absolute values of velocities and accelerations are 
equal. Sarpkaya & Issacson (1981, 83.87) proposed to determine the variation of 
C,(t)  and C,(t)  in one oscillating cycle from a set of Morison’s equations written at  
t = t ,  and t = t ,  +At assuming that C,(t)  and C,(t)  remain constant in the small time 
interval At. Their method of evaluation is also questionable because when one 
attempts to evaluate C,(t)  and C,(t) (two unknowns) from Morison’s equation (one 
equation) without an additional constraint equation (which is not available), there 
are an infinite number of possible solutions. 

The present method of evaluation, from the unsteady wake-source model, will give 
unique solutions for instantaneous drag coefficient C,(t)  and the corresponding 
inertia coefficient C,(t)  (see (37) and (41)), as well as the additional residual-inertia 
coefficient C,(t). Figures 9 and 10 show the variations of CD(t ) ,  C,(t)  and C,(t) during 
a cycle for the two cases considered. It can be seen that there is no particular 
regularity in the variations of these coefficients over the cycle. The mean drag, inertia 
and residual-inertia coefficients can be obtained by averaging the respective 
instantaneous coefficient over the cycle. 

The instantaneous value of C,(t)  does not deviate much from the mean drag 
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FIQURE 7. Comparison of measured and computed in-line force coefficient during an oscillating 
cycle. -, present model; 0 ,  present experimental data; Re = 54000, KC = 2.51, 8, = 1010, 
U, = 53.7, VR = 0.05; U ,  = 8.5 m/s, r = 0.04 m, w = 95 r.p.m. 
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FIQURE 8. Comparison of measured and computed in-line force coefficient during an oscillating 
cycle. -, present model; 0 ,  present experimental data; Re = 27000, KC = 16.96, j3* = 393, 
U, = 68.9, VR = 0.25; U ,  = 4.25 m/s, r = 0.27 m, w = 37 r.p.m. 

coefficient C ,  of 1.06 for the low VR case, as shown in figure 9. The mean drag 
coefficient C ,  is 1.01 for the high VR case, as shown in figure 10, and the deviation 
of the instantaneous value from its mean value is also larger. The present results of 
C ,  are consistent with those obtained in previous investigations as shown in table 1. 

The instantaneous inertia coefficient for oscillatory flow C,(t) computed from the 
present model (see (41)) has negligible variation over the cycle of oscillation, as seen 
from the two examples in figures 9 and 10. In all the other cases computed, C,(t) 
remains approximately constant at  its mean C, of 1.76 throughout. This is because 
the present unsteady wake-source model is a phase-averaged model which does not 
account for any possible influence from vortex shedding and fluctuation in the 
separakion location. The present C ,  also compares favourably with results obtained 
in previous investigations, as shown in table 2. 

The instantaneous residual-inertia coefficient C,(t), which is not present in 
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FIQURE 9. An example of computed instantaneous drag, inertia and residual-inertia coefficients 
during an oscillating cycle. Re = 54000, KC = 2.51,/?, = 1010, U, = 53.7, VR = 0.05; U, = 8.5 m/s, 
r = 0.04 m, o = 95 r.p.m. 

Morison's equation, remains insignificant in all the cases investigated. The maximum 
C,(t) values during a cycle, as shown in figures 9 and 10, are only of the order of 
and their mean values remain approximately zero (of the order of From (42), 
it can be seen that the CR(t)  is proportional to l/Ur and dd/d(t/T) which is related 
to the rate of back pressure variation. In all cases, the reduced velocity is high and 
the rate of back pressure variation is not large. 

For the two examples shown in figures 9 and 10, the instantaneous hydrodynamic 
coefficients C,(t) ,  C,(t) and CR(t) are shown to be relatively constant over each cycle. 
In all the cases considered, KC in the range 2.5-17 and U, in the range 50-70, the 
instantaneous values of these coefficients do not deviate much from the corresponding 
mean values. Therefore, the mean coefficients C,, C ,  and C ,  can be used to describe 
adequately the variations of the in-line force coefficient, (38), at every phase. 
Furthermore, both the mean and instantaneous residual-inertia coefficients C ,  and 
C,(t) are approximately zero for the range of experiments investigated; thus the 
third term in the right-hand side of (38) can be neglected. The in-line force coefficient 
from the present theory as given by (38), can then be simplified to 

which is found to be identical to Morison's equation written for the present flow. 
The semi-empirical Morison's equation was first proposed by Morison et al. (1950) 

for pure oscillatory flow (zero mean) past a stationary cylinder, or an oscillating 
cylinder in still fluid. Subsequently, it is recommended by the American Petroleum 
Institute API (1977) that the same equation be valid for superimposed oscillatory 
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Author KC Ur VR C D  

Verley & Moe (1979) 2.5-15 1 9 4 6  0.05-0.8 1 
Koterayama (1984) 1.3-3.1 24 0.05-0.13 0.95 

Low, Chew & Tan (1989) 2.5-15 20-110 0.05-0.25 1.25-1.0 
5-20 40-60 0.18-0.5 1.1-1.0 

Present model 2.5-17 50-70 0.05-0.25 1.06-1.01 

TABLE 1 .  Comparison of present and previous results 

and mean flow past a stationary cylinder, or an oscillating cylinder in a steady flow. 
The proposed use of Morison’s equation with two constant and independent terms 
has been subjected to much criticism (Sarpkaya & Issacson 1981) but there is no 
rigorous alternative available. However, the present potential-flow model which 
accounts for flow separation has shown that Morison’s equation is in some cases a 
satisfactory model, as the drag and inertia coefficients remain relatively constant and 
the higher-order term is negligible. 

The method can readily be extended to unsteady flow past other symmetrical 
bodies like a flat-plate, elliptical cylinder whose wetted surfaces can be transformed 
to the circle in the {-plane. 
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VR C,( = 1 + C,) Author KC u r  

Verley & Moe (1979) 2.5-15 19 0.13-0.8 1.8-1.65 
Koterayama (1984) 1.S2.5 24 0.08-0.1 1.8-1.2 

10-15 4 M  0.16-0.25 1.6 

- 2.0 
Low, Chew & Tan (1989) 2.5 25-35 0.07-0.13 1.5-1.8 
Potential-flow without - - 

Present model 2.5-17 50-70 0.05-0.25 1.76 
flow separation 

TABLE 2. Comparison of present and previous results 

7. Conclusion 
A potential-flow wake-source model is developed for steady flow past an in-line 

oscillating circular cylinder, In the model, the unsteady Bernoulli equation and the 
conformal transformation are written in a non-inertial frame of reference that is 
attached to the oscillating cylinder. 

The comparison of results as shown in figures 4-6 and 7-8 indicates that the 
present model gives good predictions of pressure distribution and in-line force 
variations for an oscillating cylinder in a mean flow. 

The in-line force equation obtained from the present model is shown to be 
comprised of an uncoupled drag term and two inertia terms. The present in-line force 
agrees in form with Morison’s equation except for an additional residual-inertia term 
that appears in the present formulation. However, the present in-line force equation 
reduces to Morison’s equation when the small residual-inertia term is neglected. This 
provides some support for the much criticized Morison’s equation. 

The present modelling enables the calculation of instantaneous drag and inertia 
coefficients which have not been successfully evaluated in previous attempts. The 
mean drag and inertia coefficients are also computed. They are shown to compare 
well with experimental results obtained by previous investigators. The present 
mean drag coefficients computed are 1.06 and 1.01 for VB of 0.05 and 0.25 
respectively. The computed mean inertia coefficients for oscillatory flow are found to 
remain constant at approximately 1.76. 

In the cases considered here, the variations of drag and inertia coefficients over a 
cycle are shown to be small. This provides support for the use of mean coefficients in 
Morison’s equation, as is commonly done in practice. 
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